AUGUST 21-23, 2015
Loews Chicago O’Hare Hotel
Rosemont, IL

Improve Your Score - Sports Medicine Update
Brian Sokalsky, DO

The American College of Osteopathic Family Physicians is accredited by the American Osteopathic Association Council to sponsor continuing medical education for osteopathic physicians.

The American College of Osteopathic Family Physicians designates the lectures and workshops for Category 1-A credits on an hour-for-hour basis, pending approval by the AOA CCME, ACOFP is not responsible for the content.
AGOFP FULL DISCLOSURE FOR CME ACTIVITIES

Please check where applicable and sign below. Provide additional pages as necessary.

Name of CME Activity: AGOFP Intensive Update and Board Review in Osteopathic Family Medicine
Dates and Location of CME Activity: August 20-23, 2015, Loews Chicago O'Hare Hotel, Rosemont, IL

Topic(s):
Examination Techniques for Office Orthopedics—Primary Orthopedics: What You Need to Know

Friday, 8/21/15 7:30-9:30pm

Improve Your Score - Sports Medicine Update
Sunday, 8/23/15
9:45-10:15am

Name of Faculty/Moderator: Brian E. Sokalsky, DO

DISCLOSURE OF FINANCIAL RELATIONSHIPS WITHIN 12 MONTHS OF DATE OF THIS FORM

✓ A. Neither I nor any member of my immediate family has a financial relationship or interest with any proprietary entity producing health care goods or services.

B. I have, or an immediate family member has, a financial relationship or interest with a proprietary entity producing health care goods or services. Please check the relationship(s) that applies.

___ Research Grants
___ Speakers’ Bureaus*
___ Ownership
___ Consultant for Fee
___ Stock/Bond Holdings (excluding mutual funds)
___ Employment
___ Partnership
___ Others, please list:

Please indicate the name(s) of the organization(s) with which you have a financial relationship or interest, and the specific clinical area(s) that correspond to the relationship(s). If more than four relationships, please list on separate piece of paper.

<table>
<thead>
<tr>
<th>Organization With Which Relationship Exists</th>
<th>Clinical Area Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
</tbody>
</table>

“If you checked “Speakers’ Bureaus” in item B, please continue:

1. Did you participate in company-provided speaker training related to your proposed topic? □ Yes □ No
2. Did you travel to participate in this training? □ Yes □ No
3. Did the company provide you with slides of the presentation in which you were trained as a speaker? □ Yes □ No
4. Did the company pay the travel/lodging/other expenses? □ Yes □ No
5. Did you receive an honorarium or consulting fee for participating in this training? □ Yes □ No
6. Have you received any other type of compensation from the company? Please specify: □ Yes □ No
7. When serving as faculty for AGOFP, will you use slides provided by a proprietary entity for your presentation and/or lecture handout materials? □ Yes □ No
8. Will your topic involve information or data obtained from commercial speaker training? □ Yes □ No

DISCLOSURE OF UNLABELED/INVESTIGATIONAL USES OF PRODUCT

✓ A. The content of my material(s)/presentation(s) in this CME activity will not include discussion of unapproved or investigational uses of products or devices.

B. The content of my material(s)/presentation in this CME activity will include discussion of unapproved or investigational uses of products or devices as indicated below:

I have read the AGOFP policy on full disclosure. If I have indicated a financial relationship or interest, I understand that this information will be reviewed to determine whether a conflict of interest may exist, and I may be asked to provide additional information. I understand that failure or refusal to disclose, false disclosure, or inability to resolve conflicts will require the AGOFP to identify a replacement.

Signature: ___________________________ Date: 8/25/15

Brian E. Sokalsky, DO

Please fax this form to AGOFP at 866-328-1835 or email to joank@acofp.org as soon as possible

Deadline: July 10, 2015
Sports Medicine Review

Brian Sokalsky, DO,
Primary Care Sports Medicine
Jersey Shore Sports Medicine
Team Physician, Jersey Shore Sharks
Rugby Club

Objectives

• Discuss common medical conditions seen in athletes
• Review diagnostic testing for these conditions
• Review treatment and return to play guidelines for these conditions

11 y/o c/o 3 wks of headaches

• HPI: Hit in forehead by opening door in school
 – ?LOC-sent to nurse’s office
 • Initial treatment unclear
 – Lethargic and crying upon return home on bus
 – Vomiting and increased sleep x3days
 – HA, photo-/phonophobia, decreased appetite and energy since
 – Not acting himself
 – CT Head normal
Concussions

New Definition

• 1st International Symposium on Concussion in Sport
 – A complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces. Several common features may be used in defining the nature of a concussive head injury
 • Direct blow to head or elsewhere on body with impulsive force transmitted to head
 • Short lived impairment of neuro function that spontaneously resolves
 • Neuropathological changes with functional rather than structural disturbances.
 • Graded set of clinical symptoms that resolve sequentially
 – May include LOC
 • Typically associated with normal neuroimaging

Pathophysiology (cont.)

• Cellular level- metabolic dysfunction
 – Excitatory amino acid shifts → inc. glycolysis
 – Simultaneous dec cerebral blood flow
• Physiologic changes
 – Increased HR at rest and exertion
 – Increased Sympathetic NS stimulation
 – Altered cerebral autoregulation
 – Altered cytochrome P450 function
 – Changes in circadian rhythm and sleep
 – Increased pro-inflammatory cytokines
Concussion

Signs
- “Dinged”, “Bell rung”, “Don’t feel myself”
- Appears stunned or dazed
- Forgets plays
- Unsure of game, score, or opponent
- Moves clumsily
- Answers questions slowly
- Loses consciousness
- Behavior or personality change
- Forgets events prior to play (retrograde)
- Forgets events after hit (posttraumatic)

Symptoms
- Headache - most common
- Nausea
- Dizziness/Balance problems
- Blurry/double vision
- Photosensitivity
- Feeling sluggish or slowed down
- Feeling foggy
- Concentration problems
- Memory problems
- Fatigue
- Sleep problems

Concussion Evaluation

- ABC’s onfield
 - C-Spine Assessment
- SCAT3-onfield assessment tool
- Physical Exam
 - Cranial Nerves
 - Motor/Sensory exams
 - Cerebellar/Cerebral exam
 - Vestibular exam
- Grading
 - Old vs New

Zurich Conference Return to Play Protocol

- Removal from contest following any signs/symptoms of concussion
- No return to the same game
- Medical evaluation following injury
 - Rule out more severe intracranial injury
 - Neuropsychologic testing
- Stepwise return to play
 - Complete rest until asymptomatic
 - Devoid of clinical symptoms
 - Return to baseline function on neuropsych testing
25 y/o F c/o suprapubic pain x3wks

- HPI: No history of injury
 - Intermittent sharp pain
 - Increased pain with running
 - Runs 5-6x/wk (approx 25-30mi/wk)
 - No groin/rad pain, no numb/ting
 - h/o 4 stress fractures over last 3 years
- PE: TTP over pubic symphysis
 - 5'6" 110 lbs → BMI 17.8
- Bone scan demonstrates stress fx
- DEXA scan: T-score -1.5

Female Athlete Triad

Disordered Eating

- Intentional deficit of energy intake compared to energy expenditure
 - With or without eating disorder
- Minimum energy availability requirement for an athlete is 30 kcal/kg of LBM/day
 - Energy availability = Dietary Energy Intake – Exercise Energy Expenditure
 - Can be caused by decreased intake or increased expenditure
- Start of the cascade of deleterious effects of the female athlete triad
Menstrual Irregularities

- Low energy availability
 - Louks, et al: reproductive disturbances with energy deficits due to either increased exercise or dietary restriction, but no disturbances with increased energy along with dietary supplementation
- Decreased energy → decreased GnRH pulsatility
 - LH pulsatility affected with diets below 30 kcal/kg-LBM/day
 - LH more affected than FSH
- Amenorrhea
 - Primary-no menstrual cycles by age 16 with other normal pubertal changes
 - Secondary-persistent absence of menstrual cycles
 - Often defined as 3 months
- Oligomenorrhea-cycle>35 days
- Luteal Suppression and Anovulation-asymptomatic

Altered Bone Mineral Density

- Can be caused by accelerated bone loss as an adult, or insufficient BMD accumulation as a child
- Pathophysiology
 - Negative correlation between number of missed cycles and bone mineral density
 - Estrogen prevents bone resorption
 - Changes not fully reversed with estrogen replacement
 - Other hormones affected by negative energy balance
 - Osteocalcin
 - Carboxyterminal propeptide of type I collagen
 - Insulin, T3, IGF-I
 - Estradiol
 - Decreased Ca and Vitamin D intake
- In premenopausal females and children-use Z-score instead of T-score: < -2.0 considered low bone density below the expected range for age
- Bone density loss may not be fully reversible

Female Athlete Triad

- Screening
 - Annual exam
 - Preparticipation Exam
 - Problem visit with one component of Triad
- History
 - Musculoskeletal
 - Menstrual
 - Psychosocial
 - Nutritional
 - Endocrine
 - Performance
 - Medications
Female Athlete Triad

- Labs
 - B-HCG, CMP, CBC, Thyroid panel, FSH/LH, Prolactin, Testosterone
 - UA
 - Euel and monitoring
 - DEXA
 - Dysmenorrhea-6 months
 - disordered eating-6 months
 - Stress fracture or fracture with minimal trauma
- Physical
 - BMI and percent body fat
 - Eyes and visual fields
 - Parotids
 - Thyroid
 - Heart
 - Skin
 - Russell's sign
 - Scarred knuckles
 - Lanugo
 - Hirsutism
 - Bruising/stra
 - Tanner staging
 - Pelvic exam

Treatment

- Nutritional counseling
 - Increase energy availability to as high as 45cal/kgFFM
- Eating disorder-mental health practitioner
- MVI
- Calcium + Vitamin D
- Monitor urine for ketones
- Continue exercising if no fracture
- ?OCP's?
 - Improved hormone balance and ?BMD
 - ? Increase body fat and decrease performance
- Bisphosphonates-questionable use secondary to long half-life and potential teratogenicity

21 y/o c/o tight chest/SOB x15min

- HPI: Halftime of rugby game
 - No SIGNIFICANT chest trauma
 - Cold, rainy weather
 - Has had similar episodes in cold weather before
 - No previous evaluations
- PE
 - Mild distress
 - +wheezes B/L
Exercise-Induced Bronchospasm

- **Asthma**: chronic disease characterized by 3 features
 1. airway obstruction (may or may not be reversible)
 2. hyperresponsiveness
 3. airway inflammation

- **Exercise Induced Bronchoconstriction**: transient increase in airway responsiveness following 5-8 minutes of strenuous exercise; EIA—such a response in individuals w/ known asthma

Epidemiology

- Prevalence: Over 22 million people in the US (7% of pop) Dx w/ asthma and 90% have EIA if provoked
- 40% of individuals w/ allergic rhinitis have EIB
- Increasing prevalence in athletes reaching over 20% in elite Olympic athletes w/ EIB
 - As high as 50% in winter sports
Clinical Presentation

- Symptoms of bronchoconstriction occur as soon as 3 min after exercise peaking @ 10-15 minutes and resolves spontaneously over 30-90 minutes after completion
- High intensity of exercise (max HR >85%) needed to produce EIB
- Most common symptoms are cough and wheezing
 - Dyspnea, congestion, chest tightness
 - Feeling out of shape, inconsistent performances

Hx and Physical

- Detailed history—include prior attacks or events, fam hx, meds, other medical hx (AR, eczema, etc.)
- Suspicions by trainers, family, coaches
- Screening questionnaires-PPE
- PE typically normal
 - ck for AR signs, complete resp tract (upper and lower) including nasopharynx, sinuses

Diagnosis

- Dx confirmed by demonstration of reduction in PFT’s of 15% in comparing baseline readings w/ post exercise readings
 - Exercise Challenge Test-most common
 - Methacholine Challenge Test
 - Eucapnic Voluntary Hyperpnea Challenge Test
 - Used by IOC to confirm need for bronchodilator
Treatment

• Nonpharmacologic
 - Counseling athletes re: appropriate sport
 - Improve/maintain aerobic conditioning- reducing stimuli for EIB
 - Breathe through scarf or mask in cold/dry air to help warm and moisten air
 - Nasal breathing
 - Avoid pollutants if possible
 - Control assoc. problems (i.e AR, sinusitis, URIs)
 - Avoid smoking

Treatment

• Pharmacologic
 - Short-acting β₂-agonist is treatment of choice
 • Complete prevention of EIB in 80-90% patients
 - AntiLeukotrienes - montelukast/zafirlukast
 • Well tolerated, safe with kids
 - Cromolyn Sodium - mast cell stabilizer
 - Inhaled corticosteroids - stabilize underlying asthma
 • No immediate effect

17 y/o M wants to return to football

• HPI: Recovered from mono
 - Diagnosed 2 weeks ago
 • Symptoms x4wks
 - Feels great, no current symptoms
 • Returned to school 2 days ago
 • No athletic activity for 3 weeks
• PE: normal
Infections

- Mono
 - Viral infection caused by Epstein-Barr Virus
 - Transmitted by oral secretions—“the kissing disease”
 - Classic triad of symptoms—fever, pharyngitis and lymphadenopathy
 - Diagnosed clinically and confirmed with blood test
 - RTP
 - Biggest concern is risk of splenic rupture
 - Greatest risk is 1st 3 weeks of illness, but most athletes still too weak to compete
 - Average symptom resolution is 4-8 weeks
 - Return to light activities after 3 weeks
 - Return to contact less clear, but athlete must at least be asymptomatic

Infections

- URTI’s/Fevers
 - Above the Neck Rule
 - Symptoms above the neck
 - Train at 50% normal intensity for 15 minutes
 - If symptoms improve—increase intensity as tolerated
 - If not (or worsen)—rest and try again when symptoms improve
 - Symptoms below the neck
 - Rest until symptoms resolve
 - If fever—rest
 - Some viral infections can cause myocarditis
Cardiology

Sudden Cardiac Death

• #1 cause of death in young athletes
• 2.3-4.4/100,000 per year
• Strong male predominance
• Football and basketball most common sports
• Majority of athletes are asymptomatic prior to the cardiac event
• Warning signs include exertional chest pain, exertional syncope/presyncope, SOB, fatigue and palpitations

Hypertrophic Cardiomyopathy

• #1 cause of SCD in young athletes in the US
• Pathology
 – Asymmetrical LV hypertrophy-usually involving the septum
 – Disorganized cellular architecture
• Most athletes asymptomatic
• Characteristic exam finding is harsh systolic murmur worsening with decreased venous return (Valsalva/squat→stand)
Hypertrophic Cardiomyopathy

- **EKG**
 - Abnormal up to 95%
 - Prominent Q-waves, deep neg T-waves, high voltage QRS voltage
- **Echo-gold standard**
- **RTP**
 - Low dynamic, low static sports only (maybe)
 - Bowling, golf

Other Causes of SCD

- **Arrhythmogenic Right Ventricular Cardiomyopathy**
 - 4% in US but 22% in Veneto region of NE Italy
 - Prodromal symptoms often present
 - Syncope, chest pain, palpitations
 - EKG-right precordial t-wave inversions, epsilon wave, QRS prolongation
 - No competitive athletics
- **Aortic rupture**-due to aortic root dilation as part of Marfan Syndrome

Marfan Syndrome

<table>
<thead>
<tr>
<th>Category</th>
<th>Major Criteria</th>
<th>Minor Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal system</td>
<td>Pathologic ectasia (dilated aortic root, dilated aortic root segment)</td>
<td>Facial appearance, chest pain, palpitations, aortic root dilation</td>
</tr>
<tr>
<td>Heart</td>
<td>Cardiomegaly, arrhythmias, atrial fibrillation, atrial flutter, QRS prolongation</td>
<td>Soft tissue fibrosis, chest pain, palpitations, aortic root dilation</td>
</tr>
<tr>
<td>Other</td>
<td>Evidence of Marfan syndrome (family history)</td>
<td>Soft tissue fibrosis, chest pain, palpitations, aortic root dilation</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>Evidence of Marfan syndrome (family history)</td>
<td>Soft tissue fibrosis, chest pain, palpitations, aortic root dilation</td>
</tr>
</tbody>
</table>

- **Early onset**
 - Before age 6 years
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5

- **Late onset**
 - After age 6 years
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5
 - Calf length/height ratio > 0.5
Athlete’s Heart

- Physiologic and morphologic changes in response to intense regular exercise
 - Increased vagal tone-lower resting HR
 - LV enlargement and increased wall thickness
 - Maintains normal LV filling
 - Larger end-diastolic cavity dimensions
 - Changes resolve with deconditioning over 3-6 months
 - EKG changes include sinus bradycardia, sinus arrhythmia, 1st degree AV block, criteria for LVH

Exertional Heat Illness

Heat Cramps

- Painful muscle spasms, most commonly in the calves, thighs and shoulders that occur several hours after vigorous exertion and begin during rest or showering.
 - Typically last only a few seconds but may last longer.
- Thought to be caused by electrolyte abnormality
- Treatment
 - Prevention
 - Passive stretch/massage
 - Rest
 - rehydration
Heat Syncope

• Results from volume depletion, peripheral vasodilatation which increases blood flow to the periphery of the body (pooling in the legs) decreasing central venous return all causing the athlete to fall.

• Treatment
 – ABC’s !!!
 – Move to cool place
 – Elevate legs
 – Rehydration

Heat Exhaustion

• Elevated temp <104 F with cramps, N/V, HA, malaise
 – Symptoms can be very non specific so a high index of suspicion is required.

• Athletes with heat exhaustion will usually have profuse sweating, dry mucous membranes, flushed skin and muscle tenderness.

• Treatment
 – Must move to cool location immediately
 – Cool body
 • Immersion vs Evaporative cooling
 – Rehydrate
 – If CNS symptoms-treat as heat stroke

Heat Stroke

• MEDICAL EMERGENCY!
• Temp>104 F + CNS dysfunction
 – Ataxia and confusion most common
 – Must r/o hyponatremia with sodium level

• Characteristically present with anhidrosis, tachycardia and hypotension.

• Risk for major organ damage
 – ARF
 – Rhabdomyolysis
 – DIC
Prevention

• How much fluid?
 – 15-20 oz, 2-3 hours before activity
 – 7-10 oz every 15-20 minutes during activity
 – Thirst is a poor indicator of acute hydration status
 – Urine should be pale yellow
• Weigh the athlete before and after the activity.
 – Afterwards they should drink enough fluid to replace the
 weight loss within two hours: 12-24 oz/lb lost.
• Monitor heat and humidity
 – Practice early morning or late afternoon
• Light clothing

References